Generalization of Schensted insertion algorithm to the cases of hooks and semi-shuffles

نویسنده

  • Mikhail Kogan
چکیده

Given an rc-graph R of permutation w and an rc-graph Y of permutation v, we provide an insertion algorithm, which defines an rc-graph R ← Y in the case when v is a shuffle with the descent at r and w has no descents greater than r or in the case when v is a shuffle, whose shape is a hook. This algorithm gives a combinatorial rule for computing the generalized Littlewood-Richardson coefficients cwv in the two cases mentioned above.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of Pieri’s Formula Using the Generalized Schensted Insertion Algorithm for Rc-graphs

We provide a generalization of the Schensted insertion algorithm for rc-graphs of Bergeron and Billey. The new algorithm is used to give a new proof of Pieri’s formula.

متن کامل

A Proof of Pieri’s Formula Using Generalized Schensted Insertion Algorithm for Rc-graphs

We provide a generalization of the Schensted insertion algorithm for rc-graphs of Bergeron an Billey [1]. The new algorithm is used to give a new proof of Pieri’s formula.

متن کامل

Rc - Graphs and a Generalized Littlewood - Richardson Rule

Using a generalization of the Schensted insertion algorithm to rcgraphs, we provide a Littlewood-Richardson rule for multiplying certain Schubert polynomials by Schur polynomials.

متن کامل

A Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...

متن کامل

Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm

We introduce a generalization of the Robinson-Schensted-Knuth algorithm to composition tableaux involving an arbitrary permutation. If the permutation is the identity our construction reduces to Mason’s original composition Robinson-Schensted-Knuth algorithm. In particular we develop an analogue of Schensted insertion in our more general setting, and use this to obtain new decompositions of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2003